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Abstract. On the line and its tensor products, Fekete points are known to be the Gauss–Lobatto
quadrature points. But unlike high-order quadrature, Fekete points generalize to non-tensor-product
domains such as the triangle. Thus Fekete points might serve as an alternative to the Gauss–Lobatto
points for certain applications. In this work we present a new algorithm to compute Fekete points
and give results up to degree 19 for the triangle. For degree d > 10 these points have the smallest
Lebesgue constant currently known. The computations validate a conjecture of Bos [J. Approx.
Theory, 64 (1991), pp. 271–280] that Fekete points along the boundary of the triangle are the
one-dimensional Gauss–Lobatto points.

Key words. triangle, Lebesgue constant, Fekete points, multivariate approximation

AMS subject classifications. 65M60, 65M70, 41A10

PII. S0036142998337247

1. Introduction. The Gauss–Lobatto quadrature points are commonly used in
numerical methods which rely on both accurate high-order polynomial interpolation
and quadrature properties. But Gauss–Lobatto quadrature points are only known
for tensor-product domains such as the line and square, making it unclear how to
extend a Gauss–Lobatto numerical method to non-tensor-product domains like the
triangle. Since Fekete points are known to be the Gauss–Lobatto points on the line
[10] and in the d-dimensional cube [7], Fekete points are one possible generalization of
Gauss–Lobatto points for the triangle. At present there is no known analytic formula
for the location of the Fekete points in the triangle; thus it is of interest to compute
Fekete points numerically so that their interpolation and quadrature properties can
be studied.

In this work, we present a new algorithm to compute Fekete points. The algorithm
is applied to the triangle, where for degree d > 10, it improves the Fekete points
computed in [1] and produces points with the best known Lebesgue constant.

2. Fekete points. Fekete points are closely related to optimal interpolation
points; therefore we first describe some well-known facts about interpolation.

Let PN be a finite dimensional vector space made up of polynomials and let Ω be
some domain such as the square or triangle. There are two polynomial spaces we will
consider in this paper. The space used when working with quadrilaterals is the span
of {xmyn, m,n ≤ d}, which we call a diamond truncation because it has that shape
when displayed using Pascal’s triangle of the monomials in x and y (see [3, p. 157]).
For triangles, the usual choice is a triangular truncation of polynomials, spanned by
the monomials {xmyn, m+ n ≤ d}.
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SettingN = dimPN , let us now takeN points, {zi}, which we assume are solvable
in PN . That is, given an arbitrary function f , there is a unique function g ∈ PN where
g(zi) = f(zi). We will denote the interpolating polynomial g by

g(z) = (INf)(z).

The lemma of Lebesgue shows how well IN (f) approximates f . Take a function
h ∈ PN which best approximates f in the max norm,

‖f‖ = max
z∈Ω

|f(z)|.

This function is not necessarily IN (f), but h = IN (h). Thus

‖f − IN (f)‖ = ‖f − h+ IN (h)− IN (f)‖
≤ ‖f − h‖+ ‖IN‖ ‖h− f‖
≤ (1 + ‖IN‖) ‖f − h‖,

where the operator max-norm is defined in the usual way:

‖IN‖ = max
‖f‖=1

‖IN (f)‖,

and ‖IN‖ is known as the Lebesgue constant. If our functional space PN is a good
choice for approximating f , then IN (f) will be a good approximation to f if there are
reasonable bounds on the Lebesgue constant.

Choices such as equally spaced (in the square or triangle) or a product Gaussian
grid (restricted to the triangle) lead to disasters. In these cases it is well known that
the Lebesgue constant grows exponentially with the degree. If the points are not
chosen very carefully, the interpolating polynomial will have wild oscillations between
the collocation points (see, for example, [8, p. 171]).

For interpolation we thus would like to find a set of points with the smallest
possible Lebesgue constant. The Lebesgue constant is a function of the interpola-
tion points, the domain Ω, and the functional space PN . For a given Ω and PN ,
Lebesgue points are the points with minimum Lebesgue constant, and thus (in this
norm) are the optimal interpolation points. Almost nothing seems to be known about
Lebesgue points in more than one dimension. Nor are we aware of a feasible method
for computing them numerically.

Fekete points are a tractable alternative to Lebesgue points. There are some the-
oretical results for Fekete points in more than one dimension and numerical evidence
shows they are close to optimal [1]. To define Fekete points for a domain Ω, we first
pick a basis {gi, i = 1, . . . , N} for PN . Then let V (z1, z2, . . . , zN ) be the generalized
Vandermonde matrix defined at the points {zi ∈ Ω, i = 1, . . . , N}. That is, V is an
N × N matrix whose elements are Vij = gj(zi). Fekete points are a set of points
{zi, i = 1, . . . , N} which maximize (for a fixed basis) the determinant of V :

max
{zi}

|V (z1, z2, . . . , zN )|.

Fekete points are independent of our choice of basis, since any change of basis only
multiplies the determinant by a constant independent of the points. The matrix V
can be thought of as the inverse transform matrix. V maps spectral coefficients of a
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function into that function’s grid point values at zi and maximizing |V | makes this
matrix far from singular.

In the square, with PN taken to be a diamond truncation of polynomials, Bos
has recently proven that the Fekete points are unique and given by the tensor product
of Gauss–Lobatto points [7]. This was proven for the interval [−1, 1] in [10]. In one
dimension, Fekete points are also a minimum energy configuration of point charges in
the interval (attributed to Stieltjes in [15, p. 140]). However, in higher dimensions,
all of these similarities break down [4]. For general domains, Fekete points are not
Gaussian-like quadrature points, nor will they be minimum energy electrostatic points
(the latter points are sometimes called elliptic Fekete points). For the electrostatic
problem, the limiting distribution as N → ∞ is known. For Fekete points, this
limiting distribution is conjectured to be a certain extremal measure [4], but this is
an unsolved problem. However, Hesthaven [11] has shown that a generalized form of
the electrostatic problem with Gauss–Lobatto points imposed on the boundary will
produce points with better Lebesgue constant than Fekete points for degree d < 9.

There are some analytic results for Fekete points in a triangle. If we assume the
Vandermonde matrix is nonsingular, then there is a maximum number of points which
can lie on the boundary. Bos [6] conjectured that in the triangle (and some other do-
mains) Fekete points will have the maximum number of points on the boundary. Un-
der this assumption, he proved that the boundary points will be the one-dimensional
Gauss–Lobatto points. We have verified this conjecture numerically. This result has
an important application: Fekete point triangular elements naturally conform with
standard quadrilateral spectral elements, since this method relies on a tensor product
of Gauss–Lobatto points within each quadrilateral [13], [16].

3. Fekete point cardinal functions. Let us call the determinant of the gen-
eralized Vandermonde matrix v:

v = max
{ζi}∈Ω

|V (ζ1, ζ2, . . . , ζN )|,

and let {zi, i = 1, . . . , N} be a set of Fekete points which achieve this maximum.
We can now write an expression for the cardinal functions (Lagrange interpolation
functions) defined at these points. If v �= 0, the cardinal functions φj(z) ∈ PN are
uniquely defined by

φj(zi) = δij ,

where δij = 1 if i = j and 0 otherwise. They are given by

φj(z) =
|V (ζ1, ζ2, . . . , ζN )|

v
,

evaluated at ζj = z and ζi = zi for i �= j. This is because at z = zi for i �= j, the i’th
and j’th rows of the Vandermonde matrix are equal and |V | = 0. When z = zj , we
have that the determinant of V is at its maximum and thus |V | = v. This expression
also leads to a bound on the cardinal functions

|φi(z)| ≤ 1 ∀z ∈ Ω.

Thus unlike general optimal interpolation points, Fekete points generate cardinal func-
tions which achieve their maximum in Ω at their associated Fekete point. This prop-
erty gives a bound on the Lebesgue constant. Writing IN (f) in terms of cardinal
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functions,

IN (f) =

N∑
i=1

f(zi)φi(z),

we see that in the max norm

‖IN‖ = max
‖f‖=1

‖IN (f)‖ = max
z∈Ω

N∑
i=1

|φi(z)| ≤ N.

Combining this bound with the lemma of Lebesgue allows for simple and well-known
proofs of uniform and exponential convergence of interpolation, differentiation, and
quadrature when applied to an analytic function f . Note the numerical results pre-
sented later suggest the bound for the Lebesgue constant in the triangle is C

√
N . In

the univariate case, the bound is well known to be logarithmic in N .

4. Computing Fekete points. We only know of a few works in which Fekete
points are computed in more than one dimension. The earliest is due to Bos [5],
who derived Fekete points for the triangle up to degree d = 3 and derived some
approximate solutions up to degree 7. More recent work has been computational.
Chen and Babuška [1] improved and extended Bos’s results to degree 13. They also
computed optimal L2-norm interpolation points and showed that these points have
a lower Lebesgue constant than their approximate Fekete points. Their algorithm is
not described, but the minimization seems not to be effective for d > 10 since we
will present Fekete points with smaller Lebesgue constant than both their Fekete and
minimal L2-norm points. Thus we suspect an improved algorithm could compute
optimal L2-norm points with even smaller Lebesgue constants.

Hesthaven [11] computed a different set of near-optimal interpolation points for
the triangle. He uses a second-order time evolution method to minimize an electro-
static energy function. The resulting solution is further refined with a modified Pow-
ell’s hybrid method. For d < 9 these points are quite good, with a smaller Lebesgue
constant than Fekete points and sometimes even the optimal L2-norm points. This
fails to be true for larger d, and for d > 13 these points become significantly worse
than Fekete points. All of these results are summarized in Table 5.1.

We note that Fekete points have also been computed on the sphere using the
equal area resolution triangular truncation of spherical harmonics [14]. They use an
exchange algorithm which is an iterative sequence of independent minimizations for
each point.

4.1. Steepest ascent algorithm. The algorithm we use to maximize the de-
terminant of the Vandermonde matrix is the steepest ascent method. We implement
this with a simple gradient flow algorithm to solve the system of ODEs

∂zi
∂t

=
∂|V |
∂zi

.

The points are evolved by moving them in the direction of steepest accent until an
equilibrium solution is reached. The only constraint is that the points are not allowed
to leave the triangle. We perform these computations in the right triangle. The
algorithm will terminate at a local maximum of |V |, and we call any such extremal
point a solution.
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In practice we can find several different solutions and we evaluate these solutions
with a variety of norms. At present we have no way of knowing if any of our com-
puted solutions represent a global maximum and thus represent true Fekete points;
hence we refer to these local maximums as approximate Fekete points. When we
find several sets of approximate Fekete points with similar values for |V |, we present
the additional solutions if they have dramatically different quadrature properties or
Lebesgue constants.

The algorithm requires us to compute ∇|V |, which has a simple expression if we
write V in terms of a cardinal function basis. To show this, we first note that the
partial derivative of the a determinant of a matrix with respect to an entry Vij is
given by

∂|V |
∂Vij

= −1i+j |Aij |,

where Aij is the ij minor of V (the matrix formed by removing the ith and jth rows
of V ). When V is computed using a cardinal function basis, V is the identity matrix.
Thus the derivative of |V | with respect to any matrix element is only nonzero for
elements along the diagonal. When V is written with a cardinal function basis, the
ith diagonal element is the ith cardinal function evaluated at the grid points zi and
the determinant of the minor |Aii| = 1. Thus our system of ODEs reduces to

∂zi
∂t

=
∂φi

∂zi
.

This algorithm has a very simple geometric interpretation. We would like the cardinal
functions φi to look like delta functions at zi. The maximum should be achieved at
the grid point zi. The steepest ascent algorithm simply moves each point towards
the maximum of its associated cardinal function. The iterative nature of the algo-
rithm comes into play because the cardinal functions change with every change in the
grid points, and thus we must recompute our basis functions at each iteration. The
iteration is terminated when ∣∣∣∣∂φi

∂zi

∣∣∣∣ ≤ 10−12

for all zi in the interior of the triangle.
The only remaining computational issue is in evaluating the cardinal functions

and their derivatives. This is done by first computing the spectral coefficients of
the cardinal functions with respect to a known basis. If the Vandermonde matrix is
written using this known basis, then the coefficients of the expansion of the cardinal
functions in terms of this basis are given by the rows of V −1. Thus we must invert V
(through Gaussian elimination) at each iteration. Since we must compute this inverse
numerically, it is important that V be well conditioned. For this we have found
that the Dubiner basis functions [9] in the right triangle are far superior to Legendre
polynomials. Using monomials for the basis functions is practically impossible. For
our largest case, degree 19, the MATLAB reported condition number of V is less than
50 when computed with the Dubiner polynomials.

A potential drawback of the steepest ascent method is its slow rate of convergence.
At present, a degree 19 maximization running in MATLAB on a Sun workstation takes
several hours to converge to 12 digits of accuracy. The convergence can be greatly ac-
celerated by using a combination of the steepest ascent method and Newton’s method.
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When the steepest ascent method has converged close enough to a solution, we switch
from the steepest ascent method and instead use Newton’s method. Details of this
algorithm are given in Appendix I.

4.2. Initial conditions. The method is extremely sensitive to the initial condi-
tion for the grid points. With different initial conditions, we can find different local
maximums of |V |. This makes it important to initialize the algorithm with a good
initial guess. We have tried several possibilities, the best of which turns out to be
points distributed to generate a density which approximates the extremal measure
g(x, y) for the triangle given in [2]. For the right triangle x ≥ 0, y ≥ 0, and x+ y ≤ 1,
the extremal measure is

g(x, y) =
1√

xy(1− x− y)
.

We are motivated to use this extremal measure because it is conjectured that g(x, y) =
f(x, y), where f(x, y) is the limiting distribution of the Fekete points (as the degree
approaches infinity) [4]. The limit f(x, y) is known to exist and to satisfy [12]

g(x, y) ≤ Cf(x, y).

To distribute a finite set of points to approximate a given density g(x, y) is not
trivial. Our initial approximation, which has much room for improvement, is as
follows. We first assume the points, at least topologically, form a nested family of
triangles. Thus we compute a nested family of triangular shells which have a “mass”
proportional to the number of points we have decided to place in that triangular
shell. If there are k points to be placed in a given shell, we then chop that shell into k
pieces, all with the same mass, and place one point in the center of each piece. This
procedure produces points which respect the D3 symmetry of the triangle, and the
iterative method maintains this symmetry. Points in the triangle with such symmetry
have orbits of either 1, 3, or 6 points. For a given set of points, there will be a variety
of symmetry configurations which can be generated by altering the number of points
within each shell, the number of shells, and the distribution of the points within a
shell.

The algorithm does not place points along the edge of the triangle, although it
does place a total of 3d points in the outermost triangular shell. In all cases we have
computed, the iterative scheme quickly moves these points to the boundary of the
triangle, and then aligns them to be the Gauss–Lobatto points, as conjectured. This
remains true even when the initial distribution is not given D3 symmetry. For d > 7,
asymmetric initial data can lead to asymmetric solutions, but the boundary points
are still the Gauss–Lobatto points.

5. Numerical results. We now present our computed approximate Fekete
points. We use two metrics to evaluate the quality of these points in the triangle.
The first metric is the Lebesgue constant, ‖IN‖. The cardinal functions needed to
compute the Lebesgue constant are computed as described in section 4.1, and the
maximum overall points in the triangle are approximated by the maximum over a
grid of 2485 equally spaced points. These numbers are given for several different
point distributions in Table 5.1. For comparison, we also list the Lebesgue constant
for the Fekete points (Gauss–Lobatto points) in the square. Note that the actual
Lebesgue constant ‖IN‖ is better than the estimate given in section 3. The values
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Table 5.1
Lebesgue constants for point distributions in the triangle using the triangular polynomial trun-

cation (unless noted otherwise). Key: “Fekete”: approximate Fekete points from this paper. “CB
Fekete”: Chen and Babuška approximate Fekete points. “CB L2”: Chen and Babuška optimal
L2-norm points. “H”: Hesthaven electrostatic points. “GL”: Fekete points (Gauss–Lobatto points)
in the square with the diamond polynomial truncation. For the “Fekete” points only, †denotes the
presence of negative quadrature weights and ‡denotes an asymmetric solution.

Degree Fekete CB Fekete CB L2 H GL
6 4.17 4.17 3.79 4.07 3.50
7 4.91 4.93 4.39 4.78 3.89
8 9.43, 5.90† 5.90 5.09 5.88 4.18
9 6.80 6.80 5.92 6.92 4.50
10 8.11, 7.75† 8.00 7.09 8.40 4.71

11 8.76, 7.89† 9.52 8.34 10.09 5.02
12 9.60, 8.03† 11.08 10.08 12.52 5.20
13 9.21 13.24 12.05 15.34 5.49
14 10.8, 9.72† 22.18 5.62
15 9.97 29.69 5.91
16 12.1 41.73 6.08
17 13.3† 6.29
18 13.5 6.41
19 14.2‡ 6.63

for the triangle can be seen to grow at a rate close to d. In the square, the Lebesgue
constant is significantly better.

Our second metric is whether or not all the quadrature weights for a given point
distribution are positive. These weights are computed by solving the linear system

N∑
j=1

wjgi(zj) =

∫
gi dA

for a basis {gi, i = 1, . . . , N} of PN . This requires inverting the Vandermonde matrix,
so again it is important that this matrix be well conditioned. Negative weights call
into question the usefulness of the points for numerical integration. Thus in Table
5.1, we list two approximate Fekete grids for a given degree if the grid with the lowest
Lebesgue constant is nonpositive. In all cases, when negative weights are present,
they are limited to points on the edge of the triangle. One could modify the weights
to make them positive, but any change in the quadrature formula would mean it no
longer integrates all of PN exactly.

Finally we present several computed approximate Fekete points in Figures 6.1 and
6.2. Next to each point distribution is a plot of the cardinal function associated with
the leftmost corner point. This cardinal function is chosen because it is associated with
the smallest (and sometimes negative as indicated in Table 5.1) quadrature weight.
The cardinal function values are plotted along a line from the corner point through the
center of the triangle. Experience has shown that the largest amplitude oscillations of
the cardinal function will be along this line. The grids plotted in Figure 6.1 all have
positive quadrature, while the grids in Figure 6.2 have non-positive quadrature and
the cardinal functions are more erratic.

6. Conclusions. We have presented an algorithm to compute approximate
Fekete points in the triangle. This algorithm has room for improvement but has
calculated grids with small Lebesgue constant and positive quadrature for up to de-
gree 19. For degree d > 10, these points have the best known Lebesgue constants.
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Fig. 6.1. Approximate Fekete grids with positive quadrature. Adjacent to each grid is the
cardinal function associated with the left most corner point, plotted along the line through the center
of the triangle.

Our numerical computation of Fekete points verifies a conjecture due to Bos [6]
that the boundary Fekete points will be the one-dimensional Gauss–Lobatto points.
This allows for easy coupling of Fekete point triangular spectral methods with the
standard quadrilateral spectral element method. This latter method is also a Fekete
point method, since the tensor product of Gauss–Lobatto points are the Fekete points
for the square.
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Fig. 6.2. Approximate Fekete grids with nonpositive quadrature. Adjacent to each grid is the
cardinal function associated with the left most corner point, plotted along the line through the center
of the triangle.

Appendix I. Newton acceleration. Newton’s method can be used to greatly
accelerate the convergence of the steepest accent algorithm presented in section 4.1.
When the steepest accent method is close enough to a local maximum, one can fix
the points along the boundary of the triangle and then use Newton’s method to solve
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the system

∂|V |
∂zi

= 0

for all zi in the interior of the triangle. In practice, we find that Newton’s method
will converge if the initial conditions satisfy

|∂zi |V || < |V |
10

for all i ≤ k.
Newton’s method requires forming and inverting the Hessian of |V |. Remarkably,

the Hessian has a very simple form when |V | is written in the cardinal function
basis and the Hessian is evaluated at the points {zi} used to define the cardinal
functions. The derivation is straightforward but tedious, so we only give the results.
Let z = (x, y) be the usual Cartesian coordinates of a point z in the triangle, and let
∂x and ∂y be differentiation with respect to x and y, respectively. The Vandermonde
matrix is a function of the N points {zi}, and we denote differentiation with respect to
the coordinates of these points by ∂xi and ∂yi

. The second derivative of |V | evaluated
at the points {zi} is given by

∂ai
∂bi |V | = ∂a∂bφi(zi)

and for i �= j

∂ai∂bj |V | = ∂aφi(zi)∂bφj(zj)− ∂bφi(zj)∂aφj(zi),

where a and b can each be either x or y.
Now let k be the number of points inside the triangle and arrange the points so

that z1, z2, . . . , zk are all inside the triangle. Newton’s method can then be written

∂

∂t




x1

x2

...
xk

y1

y2

...
yk




=

(
∂xi

∂xj
|V | ∂xi

∂yj
|V |

∂yi∂xj |V | ∂yi∂yj |V |
)1




∂x1
|V |

∂x2
|V |
...

∂xk
|V |

∂y1 |V |
∂y2 |V |

...
∂yk

|V |




,

where the 2k × 2k Hessian matrix is written in terms of four k × k blocks.

Appendix II. Tables of approximate Fekete points. We now give the coor-
dinates for selected approximate Fekete points. We list the grids which by symmetry
must have a point in the center of the triangle, since it can be seen in Table 5.1 that
these grids tend to have the best Lebesgue constants. For degree 12, we give both the
positive and nonpositive quadrature grids mentioned in Table 5.1. Coordinates for all
grids are available via email from the first author. We list the first two barycentric
coordinates of each point (equivalent to the x and y coordinates after an equilateral
triangle is linearly mapped to the right triangle with unit length base and height)
along with the quadrature weight w. The third barycentric coordinate is defined such
that the sum of all three coordinates is one. Only one point is listed from points
possessing symmetries of the triangle. Such a point represents orbit=1,3, or 6 total
points via permutations of its three barycentric coordinates.
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d= 3:

orbit=1 0.3333333333 0.3333333333 w= 0.9000000000

orbit=3 0.0000000000 0.0000000000 w= 0.0333333333

orbit=6 0.0000000000 0.2763932023 w= 0.1666666667

d= 6:

orbit=1 0.3333333333 0.3333333333 w= 0.2178563571

orbit=3 0.1063354684 0.1063354684 w= 0.1104193374

orbit=3 0.0000000000 0.5000000002 w= 0.0358939762

orbit=3 0.0000000000 0.0000000000 w= 0.0004021278

orbit=6 0.1171809171 0.3162697959 w= 0.1771348660

orbit=6 0.0000000000 0.2655651402 w= 0.0272344079

orbit=6 0.0000000000 0.0848854223 w= 0.0192969460

d= 9:

orbit=1 0.3333333333 0.3333333333 w= 0.1096011288

orbit=3 0.1704318201 0.1704318201 w= 0.0767491008

orbit=3 0.0600824712 0.4699587644 w= 0.0646677819

orbit=3 0.0489345696 0.0489345696 w= 0.0276211659

orbit=3 0.0000000000 0.0000000000 w= 0.0013925011

orbit=6 0.1784337588 0.3252434900 w= 0.0933486453

orbit=6 0.0588564879 0.3010242110 w= 0.0619010169

orbit=6 0.0551758079 0.1543901944 w= 0.0437466450

orbit=6 0.0000000000 0.4173602935 w= 0.0114553907

orbit=6 0.0000000000 0.2610371960 w= 0.0093115568

orbit=6 0.0000000000 0.1306129092 w= 0.0078421987

orbit=6 0.0000000000 0.0402330070 w= 0.0022457501

d=12:

orbit=1 0.3333333333 0.3333333333 w= 0.0626245179

orbit=3 0.1988883477 0.4005558262 w= 0.0571359417

orbit=3 0.2618405201 0.2618405201 w= 0.0545982307

orbit=3 0.0807386775 0.0807386775 w= 0.0172630326

orbit=3 0.0336975736 0.0336975736 w= 0.0142519606

orbit=3 0.0000000000 0.5000000000 w= 0.0030868485

orbit=3 0.0000000000 0.0000000000 w= 0.0004270742

orbit=6 0.1089969290 0.3837518758 w= 0.0455876390

orbit=6 0.1590834479 0.2454317980 w= 0.0496701966

orbit=6 0.0887037176 0.1697134458 w= 0.0387998322

orbit=6 0.0302317829 0.4071849276 w= 0.0335323983

orbit=6 0.0748751152 0.2874821712 w= 0.0268431561

orbit=6 0.0250122615 0.2489279690 w= 0.0237377452

orbit=6 0.0262645218 0.1206826354 w= 0.0177255972

orbit=6 0.0000000000 0.3753565349 w= 0.0043097313

orbit=6 0.0000000000 0.2585450895 w= 0.0028258057

orbit=6 0.0000000000 0.1569057655 w= 0.0030994935

orbit=6 0.0000000000 0.0768262177 w= 0.0023829062

orbit=6 0.0000000000 0.0233450767 w= 0.0009998683

d=12: (some negative quadrature weights)

orbit=1 0.3333333333 0.3333333333 w= 0.0485965670

orbit=3 0.2201371125 0.3169406831 w= 0.0602711576

orbit=3 0.2201371125 0.4629222044 w= 0.0602711576
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orbit=3 0.1877171129 0.1877171129 w= 0.0476929767

orbit=3 0.1403402144 0.4298298928 w= 0.0453940802

orbit=3 0.0833252778 0.0833252778 w= 0.0258019417

orbit=3 0.0664674598 0.0252297247 w= 0.0122004614

orbit=3 0.0218884020 0.4890557990 w= 0.0230003812

orbit=3 0.0252297247 0.0664674598 w= 0.0122004614

orbit=3 0.0000000000 0.5000000000 w= 0.0018106475

orbit=3 0.0000000000 0.0000000000 w=-0.0006601747

orbit=6 0.1157463404 0.2842319093 w= 0.0455413513

orbit=6 0.0672850606 0.3971764400 w= 0.0334182802

orbit=6 0.0909839531 0.1779000668 w= 0.0324896773

orbit=6 0.0318311633 0.3025963402 w= 0.0299402736

orbit=6 0.0273518579 0.1733665506 w= 0.0233477738

orbit=6 0.0000000000 0.3753565349 w= 0.0065962854

orbit=6 0.0000000000 0.2585450895 w= 0.0021485117

orbit=6 0.0000000000 0.1569057655 w= 0.0034785755

orbit=6 0.0000000000 0.0768262177 w= 0.0013990566

orbit=6 0.0000000000 0.0233450767 w= 0.0028825748

d=15:

orbit=1 0.3333333333 0.3333333333 w= 0.0459710878

orbit=3 0.2379370518 0.3270403780 w= 0.0346650571

orbit=3 0.3270403780 0.2379370518 w= 0.0346650571

orbit=3 0.1586078048 0.4206960976 w= 0.0384470625

orbit=3 0.2260541354 0.2260541354 w= 0.0386013566

orbit=3 0.1186657611 0.1186657611 w= 0.0224308157

orbit=3 0.0477095725 0.4761452137 w= 0.0243531004

orbit=3 0.0531173538 0.0531173538 w= 0.0094392654

orbit=3 0.0219495841 0.0219495841 w= 0.0061105652

orbit=3 0.0000000000 0.0000000000 w= 0.0001283162

orbit=6 0.1585345951 0.3013819154 w= 0.0305412307

orbit=6 0.0972525649 0.3853507643 w= 0.0262101254

orbit=6 0.0875150140 0.2749910734 w= 0.0265367617

orbit=6 0.1339547708 0.1975591066 w= 0.0269859772

orbit=6 0.0475622627 0.3524012205 w= 0.0172635676

orbit=6 0.0596194677 0.1978887556 w= 0.0188795851

orbit=6 0.0534939782 0.1162464503 w= 0.0158224870

orbit=6 0.0157189888 0.4176001732 w= 0.0127170850

orbit=6 0.0196887324 0.2844332752 w= 0.0164489660

orbit=6 0.0180698489 0.1759511193 w= 0.0120018620

orbit=6 0.0171941515 0.0816639421 w= 0.0072268907

orbit=6 0.0000000000 0.4493368632 w= 0.0023599161

orbit=6 0.0000000000 0.3500847655 w= 0.0017624674

orbit=6 0.0000000000 0.2569702891 w= 0.0018648017

orbit=6 0.0000000000 0.1738056486 w= 0.0012975716

orbit=6 0.0000000000 0.1039958541 w= 0.0018506035

orbit=6 0.0000000000 0.0503997335 w= 0.0009919379

orbit=6 0.0000000000 0.0152159769 w= 0.0004893506

d=18:

orbit=1 0.3333333333 0.3333333333 w= 0.0326079297
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orbit=3 0.2515553103 0.3292984162 w= 0.0255331366

orbit=3 0.3292984162 0.2515553103 w= 0.0255331366

orbit=3 0.1801930996 0.4099034502 w= 0.0288093886

orbit=3 0.2438647767 0.2438647767 w= 0.0279490452

orbit=3 0.1512564554 0.1512564554 w= 0.0174438045

orbit=3 0.0810689493 0.4594655253 w= 0.0203594338

orbit=3 0.0832757649 0.0832757649 w= 0.0113349170

orbit=3 0.0369065587 0.0369065587 w= 0.0046614185

orbit=3 0.0149574850 0.0149574850 w= 0.0030346239

orbit=3 0.0000000000 0.5000000000 w= 0.0012508731

orbit=3 0.0000000000 0.0000000000 w= 0.0000782945

orbit=6 0.1821465920 0.3095465041 w= 0.0235716330

orbit=6 0.1246901255 0.3789288931 w= 0.0206304700

orbit=6 0.1179441386 0.2868915642 w= 0.0204028340

orbit=6 0.1639418454 0.2204868669 w= 0.0215105697

orbit=6 0.0742549663 0.3532533654 w= 0.0183482070

orbit=6 0.0937816771 0.2191980979 w= 0.0174161032

orbit=6 0.0890951387 0.1446273457 w= 0.0155972434

orbit=6 0.0409065243 0.4360543636 w= 0.0119269616

orbit=6 0.0488675890 0.2795984854 w= 0.0147074804

orbit=6 0.0460342127 0.2034211147 w= 0.0116182830

orbit=6 0.0420687187 0.1359040280 w= 0.0087639138

orbit=6 0.0116377940 0.4336892286 w= 0.0098563528

orbit=6 0.0299062187 0.3585587824 w= 0.0096342355

orbit=6 0.0132313129 0.2968103667 w= 0.0086477936

orbit=6 0.0136098469 0.2050279257 w= 0.0083868302

orbit=6 0.0124869684 0.1232146223 w= 0.0062576643

orbit=6 0.0365197797 0.0805854893 w= 0.0077839825

orbit=6 0.0118637765 0.0554881302 w= 0.0031415239

orbit=6 0.0000000000 0.4154069883 w= 0.0006513246

orbit=6 0.0000000000 0.3332475761 w= 0.0021137942

orbit=6 0.0000000000 0.2558853572 w= 0.0004393452

orbit=6 0.0000000000 0.1855459314 w= 0.0013662119

orbit=6 0.0000000000 0.1242528987 w= 0.0003331251

orbit=6 0.0000000000 0.0737697111 w= 0.0011613225

orbit=6 0.0000000000 0.0355492359 w= 0.0004342867

orbit=6 0.0000000000 0.0106941169 w= 0.0002031499
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